23,432 research outputs found

    A multi-candidate electronic voting scheme with unlimited participants

    Full text link
    In this paper a new multi-candidate electronic voting scheme is constructed with unlimited participants. The main idea is to express a ballot to allow voting for up to k out of the m candidates and unlimited participants. The purpose of vote is to select more than one winner among mm candidates. Our result is complementary to the result by Sun peiyong′' s scheme, in the sense, their scheme is not amenable for large-scale electronic voting due to flaw of ballot structure. In our scheme the vote is split and hidden, and tallying is made for Go¨delG\ddot{o}del encoding in decimal base without any trusted third party, and the result does not rely on any traditional cryptography or computational intractable assumption. Thus the proposed scheme not only solves the problem of ballot structure, but also achieves the security including perfect ballot secrecy, receipt-free, robustness, fairness and dispute-freeness.Comment: 6 page

    Matching the Quasi Parton Distribution in a Momentum Subtraction Scheme

    Full text link
    The quasi parton distribution is a spatial correlation of quarks or gluons along the zz direction in a moving nucleon which enables direct lattice calculations of parton distribution functions. It can be defined with a nonperturbative renormalization in a regularization independent momentum subtraction scheme (RI/MOM), which can then be perturbatively related to the collinear parton distribution in the MS‾\overline{\text{MS}} scheme. Here we carry out a direct matching from the RI/MOM scheme for the quasi-PDF to the MS‾\overline{\text{MS}} PDF, determining the non-singlet quark matching coefficient at next-to-leading order in perturbation theory. We find that the RI/MOM matching coefficient is insensitive to the ultraviolet region of convolution integral, exhibits improved perturbative convergence when converting between the quasi-PDF and PDF, and is consistent with a quasi-PDF that vanishes in the unphysical region as the proton momentum Pz→∞P^z\to \infty, unlike other schemes. This direct approach therefore has the potential to improve the accuracy for converting quasi-distribution lattice calculations to collinear distributions.Comment: 18 pages, 6 figure

    Doubled Conformal Compactification

    Full text link
    We use Weyl transformations between the Minkowski spacetime and dS/AdS spacetime to show that one cannot well define the electrodynamics globally on the ordinary conformal compactification of the Minkowski spacetime (or dS/AdS spacetime), where the electromagnetic field has a sign factor (and thus is discountinuous) at the light cone. This problem is intuitively and clearly shown by the Penrose diagrams, from which one may find the remedy without too much difficulty. We use the Minkowski and dS spacetimes together to cover the compactified space, which in fact leads to the doubled conformal compactification. On this doubled conformal compactification, we obtain the globally well-defined electrodynamics.Comment: 14 pages, 4 figure

    Extracting Functional Modules from Biological Pathways

    Get PDF
    It has been proposed that functional modules are the fundamental units of cellular function. Methods to identify these modules have thus far relied on gene expression data or protein-protein interaction (PPI) data, but have a few limitations. We propose a new method, using biological pathway data to identify functional modules, that can potentially overcome these limitations. We also construct a network of these modules using functionally relevant PPI data. This network displays the flow and integration of information between modules and can be used to map cellular function
    • …
    corecore